已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>1
已知定义在R上的函数y=f(x),对任意x,y∈R,有f(x+y)=f(x)f(y),且当x>o时,f(x)>1
1) 求证 对于x∈R,f(x)>0恒成立
2)证 y=f(x)在R上为增函数
3)若对于x∈R,f(2^x)*f(m*2^2x-(m+1)*2^x+2)>1恒成立,求实数m取值范围
人气:290 ℃ 时间:2019-10-10 08:26:04
解答
2.在R上任取两数
x1,x2满足x2>x1,则可设x2=x1+k(k>0)
则有
f(x2)=f(x1+k)
由条件式,
f(x2)=f(x1+k)
=f(x1)f(k)
而由题目x>0,f(x)>1
知f(k)>1
故f(x2)=f(x1)f(k)>1*f(x1)=f(x1)
对任意的x2>x1,f(x2)>f(x1)成立,故f(x)在R上是增函数.
3.f(2^x)f(m*2^2x-(m+1)*2^x+2)=f(m*2^2x-m*2^x+2)>1恒成立,
须找出f(?)=1
而在条件式
f(x+y)=f(x)f(y)中,
取y=0即得f(0)=1,
由f(x)在R上是增函数,有
m*2^2x-m*2^x+2>0恒成立,
取2^x=k(k>0)
则有mk^2-mk+2>0恒成立于k>0
当m=0不等式成立
当m≠0,这是关于k的二次函数,且f(0)>0
画图,知△小于0且m>0即可,得
m^2-8m>0
→m>8
综上所述,m∈(8,+∞)
推荐
- 已知定义在R+上的函数y=f(x)满足:①对任意a,b∈R+,有f(a·b)=f(a)+f(b)…………
- 已知定义在R上的函数y=f(x),对任意x,y∈R,f(x)≠0,有f(x+y)=f(x)f(y)
- 定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)
- 设f(x)是定义在R+上的增函数,并且对任意的x>0,y>0,f(xy)=f(x)+f(y)总成立
- 定义域在R上的函数y=f(x),有f(x)≠0,当x>0时,f(x)>1,且对任意的a,b属于R,都有f(a+b)=f(a)+
- 关于以下三个英语短语的区别的问题
- 如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D、E两点(D、E不与B、A重合). (1)
- lim(x→0)[ cosx-1 /(sin² x)] 等于多少?
猜你喜欢