> 数学 >
设x,y≠0,且方程(x2+xy+y2)a=x2-xy+y2成立,则实数a的取值范围是______.
人气:320 ℃ 时间:2019-09-05 01:05:29
解答
由题意可得a=
x2−xy+y2
x2+xy+y2
=
(
x
y
)2
x
y
+1
(
x
y
)2+
x
y
+1

x
y
=t≠0,可得a=
t2−t+1
t2+t+1
=1-
2t
t2+t+1
=1-
2
t+
1
t
+1

变形可得
2
1−a
−1
=t+
1
t

由基本不等式可得t+
1
t
≥2或t+
1
t
≤-2,
2
1−a
−1
≥2或
2
1−a
−1
≤-2,
解得
1
3
≤a<1或1<a≤3
故答案为:
1
3
≤a<1或1<a≤3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版