设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?
设f(x)有二阶连续导数且f’(x)=0,limx—0 f’’(x) / [x] =1 为什么f(0)是f(x)的极小值?(题目中的“[ ]”是绝对值、“limx—0”是极限趋于0)
人气:325 ℃ 时间:2020-06-02 19:20:29
解答
limx—0 f’’(x) / [x] =1 ,由极限的保号性质,说明f''(0)>0,所以f'(x)在0附近是递增的,因为f’(x)=0,所以,f'(x)先是小于零,然后等于0,然后大于零,也就是f(x)先递减后递增,所以f(0)是f(x)的极小值.
推荐
- 1.设函数f(x)具有连续的二阶导数,且f‘(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值,这是为什么
- 设函数f(x)具有连续的二阶导数,且f'(0)=0,limf''(x)/|x|=1,则f(0)是f(x)的极小值
- 设函数f(x)在x=0处可导且 limx→0{[f(x)+1]/[x+sinx]}=2 则f(x)导数在x=0的值是?
- 证明:f(x)的二阶导数存在,且f(2)=0,f '(2)=1,则x=2是函数F(x)=(x-2)^2f(x)的极小值点
- 设函数f(X)=ax3+bx2+cx的极小值为8其导数过点(-2,0)(2/3,0) a=m^2-14m恒成立,求函数m的取值范围
- 高数不定积分问题!
- 高中生物PCR技术中的引物A和引物B会不会互补啊
- 求 三人的英语话剧剧本.
猜你喜欢