> 数学 >
高三题目:已知实数x、y满足1≤x²+y²≤4,求f(x,y)=x²+xy+y²的最大值和最小值.
详细步骤
人气:246 ℃ 时间:2019-12-13 02:36:30
解答
使用极坐标表示
x=pcost,y=psint
则1≤x²+y²≤4变为1≤p^2≤4
f(x,y)=x²+xy+y²=p^2+p^2sintcost=p^2(1+(sin2t)/2)
所以f(x,y)的最大值是sin2t=1,p^2=4时,最大值是4(1+1/2)=6
最小值是是sin2t=-1,p^2=1时,最小值是1(1-1/2)=1/2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版