dy/dx=(x+y)/(x-y),求y=f(x).
人气:118 ℃ 时间:2019-11-13 00:54:57
解答
dy/dx=(x+y)/(x-y),dy/dx=(1+y/x)/(1-y/x)u=y/x,dy/dx=u+xdu/dx(1+u)/(1-u)=u+xdu/dxdx/x=(1-u)du/(1+u^2)ln|x|=arctanu-(1/2)ln|1+u^2|+C(1/2)ln|x^2+y^2|-arctan(y/x)=C
推荐
- 证明 ∫[0,a]dx∫[0,x]f(y)dy=∫[0,a](a-x)f(x)dx
- y=f(x^2+1),且f'(x)=x^2,则dy/dx | x=-1=?
- dy/dx=e^(x^2)、求y=f(x)
- ∫[0,1] dx∫[0,x]f(x,y)dy= ?
- 设f(x)=1/x,y=f[(x-1)/(x+1)],求dy/dx
- 为什么0.1mol每升得氢氧化钠溶液稀释后的溶液中由水电离的氢离子浓度变大
- 芭比蝴蝶仙子与仙女公主(或“芭比蝴蝶仙子与精灵公主”等名字)Barbie Mariposa and the fairy princess
- be the first ( )to do sth
猜你喜欢