a |
sinA |
b |
sinB |
c |
sinC |
b |
sinB |
a+c |
sinA+sinC |
∵b=4,a+c=8,∠A=2∠C,
∴
4 |
sin(π−3C) |
8 |
sin2C+sinC |
∵sin2C=2sinCcosC,sin3C=sin(2C+C)=sin2CcosC+cos2CsinC=2sinCcos2C+sinC(2cos2C-1)
∴2sinCcosC+sinC=2[2sinCcos2C+sinC(2cos2C-1)]
结合sinC>0,化简整理得:8cos2C-2cosC-3=0,
解之得cosC=
3 |
4 |
1 |
2 |
∵∠A>∠B>∠C,得C为锐角,
∴cosC=-
1 |
2 |
根据余弦定理,得cosC=
a2+b2−c2 |
2ab |
3 |
4 |
∴
a2+42−(8−a)2 |
2×a×4 |
3 |
4 |
24 |
5 |
16 |
5 |
综上,a、c的长分别为
24 |
5 |
16 |
5 |