1 |
k+1 |
1 |
k+2 |
1 |
k+k |
当n=k+1时,左边的代数式为
1 |
k+1+1 |
1 |
k+1+2 |
1 |
k+1+k |
1 |
k+1+(k+1) |
故用n=k+1时左边的代数式减去n=k时左边的代数式的结果,
1 |
(k+1)+k |
1 |
(k+1)+(k+1) |
1 |
k+1 |
即为不等式的左边增加的项.
故答案为:
1 |
(k+1)+k |
1 |
(k+1)+(k+1) |
1 |
k+1 |
1 |
n+1 |
1 |
n+2 |
1 |
n+n |
13 |
24 |
1 |
k+1 |
1 |
k+2 |
1 |
k+k |
1 |
k+1+1 |
1 |
k+1+2 |
1 |
k+1+k |
1 |
k+1+(k+1) |
1 |
(k+1)+k |
1 |
(k+1)+(k+1) |
1 |
k+1 |
1 |
(k+1)+k |
1 |
(k+1)+(k+1) |
1 |
k+1 |