> 数学 >
如图,正方形AEFG的顶点E在正方形ABCD的边CD上;AD的延长线交EF于H点.

(1)试说明:△AED∽△EHD;
(2)若E为CD的中点,求
HD
HA
的值.
人气:180 ℃ 时间:2019-12-29 19:32:32
解答
(1)∵四边形ABCD是正方形,
∴AD=DC,∠ADE=∠HDE=90°,
∵四边形AEFG是正方形,
∴∠AEH=90°,
∴∠DAE+∠AED=90°,∠AED+∠DEH=90°,
∴∠DAE=∠DEH,
∵∠ADE=∠HDE=90°,
∴△AED∽△EHD;
(2)∵△AED∽△EHD,
HD
DE
=
DE
AD

∵E为CD的中点,
∴DC=2DE,
∴AD=2DE,
HD
DE
=
DE
AD
=
1
2

HD
HA
=
HD
AD+DH
HD
2DE+DH
HD
4DH+DH
=
1
5
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版