| a1 |
| b1 |
| S1 |
| T1 |
| 52 |
| 4 |
设等差数列{an}和{bn}的公差分别为d1 和d2,
由
| S2 |
| T2 |
| a1+a1+d 1 |
| b1+b1 +d 2 |
| 14+45 |
| 2+3 |
| 59 |
| 5 |
再由
| S3 |
| T3 |
| 3a1+3d 1 |
| 3b1+3d 2 |
| 21+45 |
| 3+3 |
解①②求得 b1=2d2,d1=7d2.故有 a1=26d2.
由于
| an |
| b2n |
| a1 +(n−1)d 1 |
| b1+ (2n−1)d 2 |
| 26d2 +(n−1)•7d 2 |
| 2d2+ (2n−1)d 2 |
| 7n+19 |
| 2n+1 |
∴n=15,
故答案为 15.
