已知函数f(x)=ax3+bx,当x=(根号3)/3时取极小值-2(根号3)/3
(1)求f(x)的解析试(2)如果直线y=x+m与曲线y=f(x)的图像有三个不同的交点,求m范围
人气:254 ℃ 时间:2019-08-17 23:15:30
解答
原函数f(x)=ax^3+bx
对函数求导 f′(x)=3ax^2+b
当x=√3/3时,f(x)有极小值-2√3/3
即:f′(√3/3)=3a*(√3/3)^2+b=a+b=0①
且 f(√3/3)=a*(√3/3)^3+b*(√3/3)=-2√3/3 →a/3+b=-2②
联立①、②解得a=3,b=-3
∴解析式:f(x)=3x^3-3x=3x(x-1)(x+1)
f′(x)=9x^2-3=3(3x^2-1)=3(√3x+1)(√3x-1)
令f′(x)=0,得 在x=±√3/3时,有极值点.
极值点① (√3/3,-2√3/3),极值点②(-√3/3,2√3/3)
由f(x)图形知,当直线y=x+m过f(x)两个极值点中间时,有三个交点.
-2√3/3<√3/3+m,m>-√3,
2√3/3<-√3/3+m,m<√3
∴-√3<m<√3
推荐
- 已知函数f(x)=ax^3+bx^2+cx+d是奇函数,且当x=—根号3/3时,f(x)取得极小值—2根号3/9.一、求函数解析式
- 设函数f(x)=ax^3+bx^2+cx+d是奇函数,且当x=-根号3/3时,f(x)取得极小值-2根号3/9
- 已知函数f(x)=ax三次方+bx在点x=-根号3/3处取极小值-2根号3/9
- 已知:定义域为R的函数f(x)=ax-x^3在区间(0,2/根号2)内是增函数 1.求实数a的取值范围 2.若f(x)的极小值=2,
- 已知函数f(x)=ax+bsinx,当x=π/3时,f(x)取得极小值π/3-根号3,求a,b的值
- 英语翻译
- 已知菱形的两条对角线长分别为4cm,6cm,则菱形的周长为_.
- 求一篇400字左右的物理论文(初三级别)
猜你喜欢