设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
人气:182 ℃ 时间:2019-10-14 02:01:44
解答
证明:由 2(B^-1)A=A-4E
得 2A = BA - 4B
所以有 (B-2E)(A-4E)=8E.
所以 B-2E 可逆,且 (B-2E)^-1 = (A-4E)/8.
推荐
- 若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+B)`
- 已知n阶矩阵A满足A^3=2E 其中E为n阶单位矩阵 若B=A^2+A.证明B可逆,并求B的逆矩阵
- A,B为三阶矩阵,满足2A的负一次乘以B等于B-4E,证明A-2E可逆
- A为n阶方阵,A^2+A-4E=O,证明A与A-E都是可逆矩阵,并写出A^-1及(A-E)^-1
- 设A,B,A+B,均为n阶可逆矩阵,证明A^-1+B^-1为可逆矩阵,并求A^-1+B^-1的逆阵,
- it was so dark outside that he___go out alone. A.dared not to B.dared not C.dares not 选什么为什么
- i can not believe that you should say rude words to him.怎么翻译?
- 描写冬天或雪情景交融的段落
猜你喜欢