若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+B)`
第二问是(B+E)^(-1)=1/2(A+E)
人气:190 ℃ 时间:2019-09-19 02:58:23
解答
证:
∵AB+A+B=E
∴AB+A+B+E=2E
A(B+E)+(B+E)=2E
(A+E)(B+E)=2E
[(A+E)/2](B+E)=E
利用逆矩阵的定义可知:
(B+E)^(-1)=(A+E)/2
证毕!
【最后是(A+E)/2,抄错题了吧?】
推荐
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 若A为n阶方阵,E为n阶单位阵,且A^3=O,证明A-E为可逆矩阵!
- 设A,B是n阶方阵,E是n阶单位矩阵,且AB=A-B,证明A+B可逆
- 设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆
- 设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
- 哪一个食谱更健康?中译英
- a与b互质,均是c的因数,请证明a与b的乘积ab也是c的因数?
- 南极冰川现状如何
猜你喜欢