已知双曲线x^2-y^2=1的左焦点为F,若点P为左支的下半支上任一点
双曲线x^2-y^2=1的左焦点为F,点P为左支的下半支上任一点(非顶点),则直线PF的斜率的范围是____
答案是(-∞,0)∪(1,+∞)
人气:385 ℃ 时间:2019-08-18 09:40:56
解答
法一:
结合图形,当P沿左支的下半支从左趋近于F正下方时斜率趋近于无穷大,当P沿左支的下半支趋近于无穷远时,斜率接近与渐进线平行,得(1,+∞)
而当P沿左支的下半支从F正下方趋近于左顶点时,斜率从无穷小趋近于0得(-∞,0)
法二:
x^2-y^2=1.(1)
当k存在时
y=k(x-根号2).(2)
y
推荐
- 双曲线x^2-y^2=1的左焦点为F,点P为双曲线的左支下半支上的任一点(异于顶点),则直线PF的倾斜角范围是
- 已知点F是双曲线x2a2−y2b2=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是直角三角形,则该双曲线的离心率e为( ) A.2 B.2 C.3 D.1+2
- 若点O和点F(-2,0)分别是双曲线x^2/a-y^2=1(a>0)的中心和左焦点,点P为双曲线右支上的任意一点.则向量OP*向量FP的取值范围
- F是双曲线x^2/4-y^2/12=1左焦点,A(1,4) P是双曲线右支上的动点,求PF+PA的最小值
- 已知双曲线x212-y24=1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( ) A:(-33,33) B:(-3,3) C:[-33,33] D:[-3,3]
- 做一个长方体形状的鱼缸,长8分米,宽3分米,需要玻璃多少平方分米?
- Every boring hour in life is unique
- 英语翻译
猜你喜欢