设A是m*n矩阵,x是n维向量,b是m维向量,且R(A)=r,为什么当r=m时,Ax=b才有解?
人气:284 ℃ 时间:2020-03-23 23:32:32
解答
为什么当r=m时,Ax=b才有解?
不能这样说
只能说:当r=m时,Ax=b有解.
因为此时 m=r(A)
推荐
- 设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0
- 如果A是一个反对称矩阵:A'=-A,则对任一个n维向量X,都有X'AX=(X'AX)'.这是为什么呢?
- 已知A是n阶实对称矩阵,对任一的n维向量X,都有X’(X的转置)AX=0,证明A=0.
- 设A为n阶矩阵,那么对任何n维列向量b,方程Ax=b都有解的充要条件为什么答案是R(A)=n,而不是R(A)=R(A,b)
- 假如A是n阶矩阵,b是n维非零向量,r1,r2非齐次线性方程组AX=b的解,m是齐次线性方程AX=0的解.
- 作文 传统于现代
- 在一个停车场里停车一次至少要交费2元.如果停车超过1小时.每多停0.5小时要多交1.5元.这辆汽车在离开停车场
- 在等差数列-5,-7/2,-2,-1/2,...的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项
猜你喜欢