| (a−3)(a+1) |
| 4 |
| a2+3 |
| 4 |
接下来比较c与a的大小,
由b=
| (a−3)(a+1) |
| 4 |
假设c=
| a2+3 |
| 4 |
∴c>a,即三角形最大边为c,
∴△ABC中C为最大角,
由余弦定理可得:c2=a2+b2-2ab•cosC,
将b=
| (a−3)(a+1) |
| 4 |
| a2+3 |
| 4 |
| a2+3 |
| 4 |
| (a−3)(a+1) |
| 4 |
| (a−3)(a+1) |
| 4 |
解得:cosC=-
| 1 |
| 2 |
则C=120°.
故选C
| (a−3)(a+1) |
| 4 |
| a2+3 |
| 4 |
| (a−3)(a+1) |
| 4 |
| a2+3 |
| 4 |
| (a−3)(a+1) |
| 4 |
| a2+3 |
| 4 |
| a2+3 |
| 4 |
| (a−3)(a+1) |
| 4 |
| (a−3)(a+1) |
| 4 |
| 1 |
| 2 |