>
数学
>
用极限准则证明数列x1=√3,xn+1=√(3+xn) (n=1,2,...)的极限存在
人气:180 ℃ 时间:2019-10-19 21:14:46
解答
应用单调有界准则
①先证单调性(应用数学归纳法)
②再证有界性(应用数学归纳法)
所以数列单调递增且有上界,于是数列的极限存在.
敬请及时采纳,回到你的提问页,点击我的回答,然后右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了,你有问题也可以在这里向我提问:
推荐
设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
用单调有界数列收敛准则证明数列极限存在.(1)X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0) (2)X1=√2,Xn+1
设x1=1,数列Xn+1=1+1/Xn (n=1,2,……)证明Xn收敛,并求极限(请用单调有界或柯西准则证明)
设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.
0<X1<2,Xn+1=根号下2+Xn.证明数列Xn有极限,并求出该极限…
淀粉溶液加稀硫酸加热后冷却生成什么
is this your book?为什么this前面用is?
在一只底面半径为10厘米的圆柱形玻璃杯里.水深8厘米.要在杯中放如长和宽都是8厘米.高是15厘米的一块铁块.
猜你喜欢
lateral departure是什么意思
The other day,we got to talk about the rules that we have in shool的中文意思
薯条 用英文 怎么说怎么写呀?
在真空且没有重力的空间内,拿一个球去撞另一个静止的球(两球一样),小球会怎样运动?
已知a2-4ab+4b2=0,ab≠0,求a+2b/a2−b2•(a−b)的值.
(-1/2m³n)³·(-2m²n)的4次方
桃园里来了第一群猴子,吃去桃子总数的一半又半个,第二群后自由吃去了余下的桃子的一半又半个,第三群猴
某无色溶液中,可能含有H+、Ag+、Cu2+、Na+、OH-、CL-、CO32-的几种离子,加石蕊,溶液变红
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版