>
数学
>
在平面直角坐标系xOy中,过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F作圆x^2+y^2=a^2的一条切线(切点为T
)交双曲线的右支于点P,若M为FP的中点,则△OMT的面积为
答案为(2ab-b^2)a/4(b-a)
人气:342 ℃ 时间:2019-12-07 06:58:58
解答
设右焦点为F2 则PF-PF2=2a ∵M为中点
∴MF-MO=a FT=√OF^2-OT^2=b
∴MF=MO+a=MT+b``````① 又∵MO^2=MT^2+a^2 ·····②
由①②得MT=2ab-b^2/2(b-a) OM=2a^2-2ab+b^2/2(b-a)
∴S=1/2*MT*OM=(2ab-b^2)a/4(b-a)
推荐
在直角坐标系xOy中,过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F作圆x2+y2=a2的一条切线(切点为T)交双曲线右支于点P,若M为FP的中点.则|OM|-|MT|等于( ) A.b-a B.a-b C.a+b2 D.a+
过双曲线x^2/a^-y^2/b^2=1(a>0b>0)的左焦点F1(-c,0)作圆x^2+y^2=a^2/4的切线 切点为E
过双曲线x2a2-y2b2=1 (a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为 _ .
过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x^2+y^2=a^2/4的切线,切点为E,延长FE
从双曲线x^2/a^2-Y^2/b^2=1(a大于0,b大于0)的左焦点F引圆x^2+Y^2=a^2的切线,切点为T,延长
设y=ln(1+x)则y’= y”=
英语翻译
函数y=(cosθ)x2-4(sinθ)x+6对任意实数x都有y>0,且θ是三角形的内角,则θ的取值范围是_
猜你喜欢
电梯平均运行载重问题,
要准确,浙江省杭州市三墩镇颐景园小区荷风苑11幢2单元XXX室 怎么翻译成英文
我国国家的本质是什么?
邻甲氧基苯甲醛的结构式
二元二次方程组习题
水中的微生物有哪些
公路上晒粮怎么举报?
DNA产生的mRNA翻译完成后哪里去啦?要是的话,怎么分的,分成了什么?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版