在平面直角坐标系xOy中,过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F作圆x^2+y^2=a^2的一条切线(切点为T
)交双曲线的右支于点P,若M为FP的中点,则△OMT的面积为
答案为(2ab-b^2)a/4(b-a)
人气:491 ℃ 时间:2019-12-07 06:58:58
解答
设右焦点为F2 则PF-PF2=2a ∵M为中点
∴MF-MO=a FT=√OF^2-OT^2=b
∴MF=MO+a=MT+b``````① 又∵MO^2=MT^2+a^2 ·····②
由①②得MT=2ab-b^2/2(b-a) OM=2a^2-2ab+b^2/2(b-a)
∴S=1/2*MT*OM=(2ab-b^2)a/4(b-a)
推荐
- 在直角坐标系xOy中,过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F作圆x2+y2=a2的一条切线(切点为T)交双曲线右支于点P,若M为FP的中点.则|OM|-|MT|等于( ) A.b-a B.a-b C.a+b2 D.a+
- 过双曲线x^2/a^-y^2/b^2=1(a>0b>0)的左焦点F1(-c,0)作圆x^2+y^2=a^2/4的切线 切点为E
- 过双曲线x2a2-y2b2=1 (a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,若E为线段FP的中点,则双曲线的离心率为 _ .
- 过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左焦点F(-c,0)(c>0),作圆x^2+y^2=a^2/4的切线,切点为E,延长FE
- 从双曲线x^2/a^2-Y^2/b^2=1(a大于0,b大于0)的左焦点F引圆x^2+Y^2=a^2的切线,切点为T,延长
- 中国最大的淡水湖?面积是多少?分布在那个地区
- 星星果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.A种果汁、B种果汁的单价分别是多少元?
- 自行车行驶的路程一定,车轮的转数和车轮的直径成什么比例?为什么
猜你喜欢