| 1+sin2x |
| (sin2x+1)2 |
| 1 |
| 1+sin2x |
(1)因为1+sin2x≠0所以sin2x≠-1,2x≠2kπ−
| π |
| 2 |
| π |
| 4 |
又0<1+sin2x≤2,所以f(x)≥
| 1 |
| 2 |
所以定义域为{x|x≠kπ−
| π |
| 4 |
| 1 |
| 2 |
(2)因为f(x)=2,所以
| 1 |
| 1+sin2x |
| 1 |
| 2 |
因为−
| π |
| 4 |
| 3π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
所以2x=−
| π |
| 6 |
| 7π |
| 6 |
所以x=−
| π |
| 12 |
| 7π |
| 12 |
| (sinx+cosx)2 |
| 2+2sin2x−cos22x |
| π |
| 4 |
| 3π |
| 4 |
| 1+sin2x |
| (sin2x+1)2 |
| 1 |
| 1+sin2x |
| π |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 1+sin2x |
| 1 |
| 2 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 12 |
| 7π |
| 12 |