计算∫∫∫(x^2+y^2)dxdydz Ω是由曲面z=x^2+y^2及平面z=4所围成的闭区域
人气:288 ℃ 时间:2020-04-13 07:23:20
解答
直接上柱面极坐标
x=rcosθ,y=rsinθ
原积分=∫∫∫r^2 rdrdθdz
=∫(0->2π)dθ∫(0->2) r^3dr∫(r^2->4)dz
=32π/3
推荐
- 计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.
- 把积分∫∫∫f(x,y,z)dxdydz化为三次积分,其中积分区域是由曲面z=x^2+y^2,y=x^2及平面y=1,z=0围成的闭区域
- ∫∫∫(5xy^2)dxdydz,其中是由曲面z=h/R(x^2+y^2)^1/2与平面z=h(R>0,h>0)所围成的闭区域
- 计算∫∫∫(x^2+y^2)dxdydz, 积分区域由曲面z=2-x^2 和z=x^2+2y^2所围成的闭区域,在线等
- 计算∫∫∫(x^2+y^2)dv,其中Ω是由曲面x^2+y^2=2z与平面z=2,z=8所围成的闭区域
- 英语句型转换,
- 团体购买公园门票票价如下:
- 已知sinα=0.6,且α是钝角,求sin2α与cos2α的值
猜你喜欢