故有△=(sinA-sinC)2-4(sinB-sinA)(sinC-sinB)=0.
根据正弦定理得:(a-c)2-4(b-a)(c-b)=a2+c2-2ac-4(bc-b2-ac+ab)=(a2+c2+2ac)-4(ab+bc)+4b2
=(a+c)2-4b(a+c)+4b2=(a+c-2b)2=0,
即a+c=2b.
∴cosB=
| a2+c 2−b2 |
| 2ac |
| (a+c)2−2ac−b2 |
| 2ac |
| 3b2−2ac |
| 2ac |
| 3 |
| 2 |
| b2 |
| ac |
∵(2b)2=(a+c)2≥4ac,∴b2≥ac,∴
| 3 |
| 2 |
| b2 |
| ac |
| 3 |
| 2 |
| 1 |
| 2 |
又∵-1<cosB<1,∴
| 1 |
| 2 |
故选D.
