在满足方程x²+y²-2x-2y+1=0的实数对(x,y)中,(y)/(x+1)的最大值是?
人气:328 ℃ 时间:2020-05-14 17:46:00
解答
设Y/(X+1)=K得 Y=K(X+1) 或KX-Y+K=0----(1)
(X,Y) 在过点(-1,0) 斜率为Kd的直线上;
原式 X²+Y²-2x-2y+1=0简化得 (X-1)²+(Y-1)²=1 -----(2)
即 (X,Y)在以圆心为(1,1),半径为1的圆周上.
(X,Y)同时满足(1)(2)时,即(X.Y)为直线 Y=K(X+1) 与圆X²+Y²-2x-2y+1=0的交点.
圆周上的所有点与(-1.0)连接成直线,直线斜率K值越大,而K=Y/(X+1)越大.
过点(-1.0)的直线束与圆(X-1)²+(Y-1)²=1相切,是直线斜率的最大或最小值.
圆与直线相切时,圆心(1.1)到直线 KX-Y+K=0距离D=|k-1+k|/√(k²+1)=1
解得K=0,K=4/3并解得此切点x=1/5 y=8/5
过点(-1.0) 及圆周上的点(1/5. 8/5)的直线,斜率K最大,即K=Y/(X+1)最大值为4/3
推荐
猜你喜欢
- 在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P移动的距离为X,三角形ABP的面积为S
- sole和only在作形容词时,都可以表示“唯一的”,请问有什么区别么?
- 请写一个系数为-2,且只含有a,b,c的四次单项式
- What would you do if you went to a strange country and have serious culture shock?"
- 英语翻译
- 用浓磷酸和环己醇制备环己烯,没做出产品,分析下可能的原因
- 巧栽树:小树苗,我来栽,栽五排;每排都在四棵,怎样才能栽出来
- 在同一平面内有2011条直线a1,a2,a3...,a2011,a1⊥a2,a2//a3,a3⊥a4,a4//a5,那么a1与a100的位置关系该如何