已知定义在R上的函数f(x)不恒等于0,且对任意x,y∈R,满足xf(y)=yf(x),则f(x)的奇偶性为______.
人气:398 ℃ 时间:2020-01-29 09:07:50
解答
令y=-x≠0,有xf(-x)=-xf(x),
则f(-x)=-f(x),
当x=0时,yf(0)=0,即f(0)=0,
∴f(x)是(-∞,+∞)上的奇函数,
故答案为:奇函数
推荐
- 已知定义在实数集上的函数f(X),不恒为0,且对任意x.y属于R,满足xf(Y)=yf(X),判断f(X)的奇偶性
- 已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断函数f(x)的奇偶性.
- 已知定义在R上的函数f(x)不恒等于0,且对任意x,y∈R,满足xf(y)=yf(x),则f(x)的奇偶性为_.
- 定义域在R上的函数f(x)对实数x,y,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断并证明f(x)的奇偶性.
- 函数f(x)定义在区间(0,正无穷)上,且对任意的x∈正实数,y∈实数,都有f(x^y)=yf(x)
- 求解ACCA F2一个问题
- lim(n→∞) [(n^3-1)/(3*n^2+n)-an-b]=0 求a、b的值
- 人们对太阳能的利用有什么?4点
猜你喜欢