若函数f(x)=
4x--a•2x+在区间[0,2]上的最大值为9,求实数a的值.
人气:255 ℃ 时间:2020-10-01 06:19:01
解答
∵f(x)=12•22x-a•2x+272,令2x=t,∵0≤x≤2,∴1≤t≤4,∴f(x)=g(t)=12t2-at+272=12(t-a)2+272-a22(1≤t≤4),∴抛物线g(t)的对称轴为t=a,①当a<52时,[f(x)]max=g(4)=432-4a=9⇒a=438>52,不合;②当a≥52...
推荐
- 若函数f(x)=4^(x-1/2)-a*2^x+27/2在区间[0,2]上的最大值为9,求实数a的值
- 若函数f(x)=4x-1/2-a•2x+27/2在区间[0,2]上的最大值为9,求实数a的值.
- 若函数f(x)=4∧(x-1/2)-a*(2∧x)+2/27在区间[0,2]上的最大值为9,求实数a的值
- 若函数f(x)=4x-1/2-a•2x+27/2在区间[0,2]上的最大值为9,求实数a的值.
- 若函数f(x)=4^(x-0.5)-a*2^x+13.5在区间[0,2]上的最大值为9,求实数a的值
- 在ΔABC中,∠A=36°,AB=AC,BD为AC上的点,BC=BD,求证AD:AC=2分之根号5减1
- 李涉的《再宿武关》通过溪水表现出什么情感?
- 偶然的机遇,只能给那些有准备的人,给那些善于独立思考的人,给那些具有锲而不舍精神的人
猜你喜欢