若函数f(x)=4^(x-1/2)-a*2^x+27/2在区间[0,2]上的最大值为9,求实数a的值
先展开f(x)=4^x/4^0.5-a*2^x+27/2=4^x/2-a*2^x+27/2
设m=2^x,则f(m)=m^2/2-am+13.5,
定义域变成了[1,4].这样就可以分类讨论了
如果对称轴x=a2.5,那最大值为f(1)=9,解得a=5.
——————————————————————
为什么要讨论a与2.5关系,
人气:265 ℃ 时间:2020-10-01 06:19:01
解答
因为f(m)=m^2/2-am+13.5是一个一元二次方程,它的函数图象是关于它自己的对称轴对称的因为定义域是[1,4],1,4的中间是2.5,那么函数的对称轴如果正好是2.5,那么函数在1上的值和在4上的相等,且都为最大值.但如果对称轴...
推荐
猜你喜欢