| 1 |
| 2 |
∴2S=absinC=c2-(a-b)2,化简得ab(sinC-2)=-(a2+b2-c2)
∵根据余弦定理,得a2+b2-c2=2abcossC
∴ab(sinC-2)=-2abcossC,整理得sinC=2-2cosC
由此可得:
| sinC |
| 1−cosC |
| 2−2cosC |
| 1−cosC |
(2)由(1)得
| sinC |
| 1−cosC |
| 4 |
| 5 |
∴S=
| 1 |
| 2 |
| 2 |
| 5 |
∵a+b=2,∴S=
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
当且仅当a=b=1时,面积S的最大值为
| 2 |
| 5 |
| sinC |
| 1−cosC |
| 1 |
| 2 |
| sinC |
| 1−cosC |
| 2−2cosC |
| 1−cosC |
| sinC |
| 1−cosC |
| 4 |
| 5 |
| 1 |
| 2 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |