设f(x)在[0,2]连续,且在(0,2)内可导,f(0)=f(2)=0,f(1)=2.证明存在一点c在(0,2),使得f‘(c)=1
人气:131 ℃ 时间:2020-04-11 05:16:09
解答
考虑g(x) = f(x)-x,有g(x)在[0,2]连续,在(0,2)可导,g(0) = 0,g(1) = 1,g(2) = -2.
由介值定理,存在a∈(1,2),使g(a) = 0.
于是由罗尔定理,存在c∈(0,a),使g'(c) = 0,即有f'(c) = 1 (∵g'(x)=f'(x)-1).
推荐
- 设f(x)在【0,a】上连续,在(0,a)内可导,且f(a)=0,证明存在一点 X属于(0,a),使f(x)+x*f`(x)=0
- 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1-ξ
- 设f(x)在[0,1]连续,在(0,1)可导,证明存在一点ξ∈(0,1),使f(ξ)=2ξ[f(1)-f(0)]
- 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
- f(x)在[0,1]上连续,在(0,1)内可导.f(0)=f(1)=0,f(1/2)=1,证明在(0,1)内至少存在一点使f'(x)=1
- 时钟指示2点15分,它的时针和分针所成的锐角是.时针指示6点45分,它的时针和分针所成的
- what do pople do with it
- 简述工业社会的经济结构与教育职能的特点
猜你喜欢