![](http://hiphotos.baidu.com/zhidao/pic/item/91529822720e0cf3b496a17c0946f21fbf09aad0.jpg)
过O作OF⊥AC,于F,
则F为AC的中点,
连接CH,取CH中点N,连接FN,MN,
则FN∥AD,AH=2FN,MN∥BE,
∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,
∴OM∥AD,BE∥OF,
∵M为BC中点,N为CH中点,
∴MN∥BE,
∴OM∥FN,MN∥OF,
∴四边形OMNF是平行四边形,
∴OM=FN,
∵AH=2FN,
∴AH=2OM.
(2)证明:连接OB,OC,
![](http://hiphotos.baidu.com/zhidao/pic/item/023b5bb5c9ea15ce4dac0f8eb5003af33b87b2f3.jpg)
∵∠BAC=60°,
∴∠BOC=120°,
∴∠BOM=60°,
∴∠OBM=30°,
∴OB=2OM=AH=AO,
即AH=AO.