已知圆C:(x-1)^2+(y-2)^2=25,直线L:(2m+1)x+(m+1)y-7m-4=0,求证不论m取什么实数,直线恒与圆相交于两点
m为实数
人气:127 ℃ 时间:2019-11-13 03:38:12
解答
直线与圆交于两点,说明圆心到直线的距离小于半径,运用点到直线距离公式得:
|2m+1+2(m+1)-7m-4|/√[(2m+1)^2+(m+1)^2]<5
即|-3m-1|/√[(2m+1)^2+(m+1)^2]<5
两边平方得
(3m+1)^20
△=144^2-4*116*490恒成立
因此不论m取什么实数,直线恒与圆相交于两点
推荐
猜你喜欢
- 已知等比数列{an}的公比为-1/2,则lim(a1+a2+...+an)/(a2+a4+...+
- point down
- 数学判断正误
- 若3x2-1=x,求9x4+12x3-2x2-7x+2006的值
- 甲乙两车同时从AB两地相对开出,甲车每小时行45千米,乙车每小时行60千米.两车正好在距中点45千米处相遇,求A
- What do you think of Jim? I think he is ( an )hon
- 对……有很大/没有影响 英语翻译
- 1/2,-1/6,1/12,-1/20……请你找出其中规律,并按此规律填空,第21个数是?