设平面内的向量OA=(1,7)OB=(5,1)OM(2,1),点p是直线OM上的一个动点求当pA*PB取最小值时,OP的坐标!急
人气:200 ℃ 时间:2019-08-19 14:46:58
解答
因P在OM上
设OP=λOM=(2λ,λ)
PA=OA-OP=(1-2λ,7-λ)
PB=OB-OP=(5-2λ,1-λ)
PA·PB=(1-2λ)·(5-2λ)+(7-λ)·(1-λ)
=12-20λ+5λ²
=5(λ-2)²-8
所以,当λ=2时
PA·PB最小,此时
OP=(4,2)
推荐
- 设平面内向量OA(1,7),向量OB(5,1),向量OM(2,1),P是直线OM上一个动点…向量PA乘向量PB=-8
- 设平面内的向量OA=(1,7),OB=(5,1),OM=(2,1),点p是直线OM上的一个动点,求当PA、PB去最小值时OP的坐标及
- 平面内有向量OA=(1,7),OB=(5,1),OM=(2,1),点P为直线OM上的动点.且向量PA与向量PB的数量积为-8
- 设平面内的向量OA=(1,7),OB=(5,1),OM=(2,1),OP(x,y),点p是直线OM上的一个动点,1:求当PA乘PB的最小值
- 已知坐标平面内OA=(1,5),OB=(7,1),OM=(1,2),P是直线OM上的一个动点,当PA*PB取最小值时,求OP的坐标,
- β-磷酸三钙,磷酸三钙和磷酸钙的区别
- 政治表现怎么写
- 几个平面把空间最多可以分成几部分为什么
猜你喜欢