对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x为f(x)的“稳定点”
若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求实数a的取值范围;
(Ⅱ)∵A≠∅,∴ax2-1=x有实根,
∴a≥-
14.又A⊆B,所以a(ax2-1)2-1=x,
即a3x4-2a2x2-x+a-1=0的左边有因式ax2-x-1,
从而有(ax2-x-1)(a2x2+ax-a+1)=0.(6分)
∵A=B,
∴a2x2+ax-a+1=0要么没有实根,要么实根是方程ax2-x-1=0的根.若a2x2+ax-a+1=0没有实根,
则a<
34;若a2x2+ax-a+1=0有实根且实根是方程ax2-x-1=0的根,
则由方程ax2-x-1=0,得a2x2=ax+a,代入a2x2+ax-a+1=0,有2ax+1=0.
由此解得x=-
12a,再代入得14a+
12a-1=0,
由此a=
34,故a的取值范围是[-
14,
34].
∵A=B,
∴a2x2+ax-a+1=0要么没有实根,要么实根是方程ax2-x-1=0的根
人气:300 ℃ 时间:2020-04-13 04:01:21
解答
你的题目和解答输入有些问题:问问你的题目是不是这样的:
若f(x)=ax^2-1(a∈R,x∈R),A={x|f(x)=x},B={x|f(f(x))=x},且A=B≠Φ,求实数a的取值范围.
你已经知道了A⊆B,同时A={x|f(x)=x}={x|ax^2-x-1=0}至多有两个根
而 B={x| f(f(x))=x }={x| a(ax^2-1)^2-1=x }={x| (ax^2-x-1)(a^2x^2+ax-a+1)=0}
这里我们通过集合B可以看出方程a^2x^2+ax-a+1=0有两种情况(有根和无根)
要使A=B,如果B没有根,则就满足了条件
如果B有根,那么方程a^2x^2+ax-a+1=0的根必须和ax^2-x-1=0的根相同.如果不同,那么A=B就不能成立.那你能再告诉我 为嘛由方程ax2-x-1=0,得a2x2=ax+a在“如果B有根,那么方程a^2x^2+ax-a+1=0的根必须和ax^2-x-1=0的根相同”这样的条件下,说明这两个方程可以化为用一个方程。所以是那样的。不好意思 我有点笨 你能说得再详细点不我认真阅读了下你的解答过程,情况是这样的:原文:若a2x2+ax-a+1=0有实根且实根是方程ax2-x-1=0的根,则由方程ax2-x-1=0,得a2x2=ax+a,代入a2x2+ax-a+1=0,有2ax+1=0.解释:方程a^2x^2+ax-a+1=0和ax^2-x-1=0有相同的根,所以为了解题这样处理:ax^2-x-1=0得到 ax^2=x+1 得到 a^2x^2=ax+a (方程两边同时乘以a)然后把a^2x^2=ax+a 代入方程a^2x^2+ax-a+1=0,得到了2ax+1=0
推荐
- 对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”;f[f(x)]=x,则称x为f(x)的“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x| f(x)=x},B={x| f[f(x)]=x}.
- 对于函数f(x),若f(x)=x,则称x为f(x)的“不动点” ;若f[f(x)]=x,则称x为f(x)的“稳定点” .函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x/f(x)=x},B={x/f[f(x)]=x.
- 对函数f(x),若f(x)=x,称x为f(x)不动点;若f(f(x))=x,称为的稳定点.A={x|f(x)=x},B={x|f(f(x))=x}……
- 对于函数f(X),若f(x)=x,则称x为f(x)的不动点,若f(f(x))=x,则称x为f(x)的稳定点,函数f(x)的不动点和
- 对于函数f(x)若f(x)=x则称x为f(x)的"不动点"”,若f(f(x))=x,则称x为f(x)的“稳定点”.
- 已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对任意x∈D,等式f(kx)=k/2+f(x)恒成立. (1)试判断一次函数f(x)=ax+b(a≠0)是否属于集合M; (2)证明f(x)=log2x属于集
- 如果已知P,Q两点坐标,怎么算向量PQ,如果已知两向量的坐标,这两个向量相乘怎么算
- 请问 2009年8月8日是星期六 2010年10月是星期几?要解释每一步算式!
猜你喜欢