从1~30这30个自然数中,每次取两个不同的数,使它们的和是4的倍数,共有多少种不同的取法?
人气:318 ℃ 时间:2019-08-17 16:50:26
解答
(1)首先把这30个数分类:1、被4整除:4,8,12…28 (7个);2、被4除余1:1,5,9,13…29(8个);3、被4除余2:2,6,10,14…30(8个);4、被4除余3:3,7,11,15…27(7个);
(2)进一步分析探讨:
第1组的数,必须和第1组的数,才能使和为4的倍数6+5+4+3+2+1=21(种);
第2组的数,必须和第4组的数,才能使和为4的倍数7×8=56(种);
第3组的数,必须和第3组的数,才能使和为4个倍数7+6+5+4+3+2+1=28(种);
第4组的数,刚才已经讨论过了,不必再讨论;
所以一共有21+56+28=105(种).
故答案为:105.
推荐
- 从1,2,…,30这30个自然数中,每次取不同的三个数,使这三个数的和是3的倍数的取法有多少种?
- 从1,2,3.30这30个自然数中,取不同的三个数,是三个数的和是3的倍数的取法有多少种?
- 从1至25中,这25个自然数中,每次取出两个不同的数,使它们的和是4的倍数,共有( )种取法.
- 在1,2,3,4,……,100这100个自然数中任取两个不同的数,使得取出的两数之和是6的倍数,后多少种取法?
- 从1,2,3,…,30这30个自然数中,至少要取出_个不同的数,才能保证其中一定有一个数是5的倍数.
- 我们不能不惊叹它生命力的顽强.改成反问句.
- am的用法,比如:I want to go to the zoo.I a cute girl.
- 在春天里你爸爸通常在干什么用英语说
猜你喜欢