设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA
人气:482 ℃ 时间:2019-10-22 00:24:04
解答
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆 逆矩阵为B-E
由1知 (A-E)和B-E 互逆 所以(B-E)(A-E)=E 与(A-E)(B-E)=E,展开比较就可以得到AB=BA
推荐
- 已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆
- 设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
- 证明:A,B为n阶矩阵,I-AB可逆,则I-BA可逆
- 设A,B是n阶矩阵,且A可逆,证明AB与BA相似.
- 设A,B为n阶矩阵,且E-AB可逆,证明E-BA
- look ben is _(pull) up the carrots now
- 10以内所有质数的和是_,既是质数又是偶数的是_.
- Do you think you'll be able to go to sleep fight away?这句话是不是有问题
猜你喜欢