当a=4时,f'(x)=-x2+4x-3,令f'(x)>0得1<x<3…(2分)
∴当a=4时,f(x)的单调增区间为(1,3),单调减区间为(-∞,1),(3,+∞).…(3分)
(Ⅱ)g'(x)=lnx+1,令g'(x)>0,得x>
| 1 |
| e |
①当t≥
| 1 |
| e |
∴g(x)min=g(t)=tlnt…(5分)
②当0<t<
| 1 |
| e |
| 1 |
| e |
在区间(
| 1 |
| e |
∴g(x)min=g(
| 1 |
| e |
| 1 |
| e |
(III) 由f'(x)=2g(x)可得-x2+ax-3=2xlnx
∴a=x+2lnx+
| 3 |
| x |
令h(x)=x+2lnx+
| 3 |
| x |
| 2 |
| x |
| 3 |
| x2 |
| (x+3)(x−1) |
| x2 |
| x | (
| 1 | (1,e) | ||
| h'(x) | - | 0 | + | ||
| h(x) | 单调递减 | 极小值 | 单调递增 |
h(
| 1 |
| e |
| 1 |
| e |
| 3 |
| e |
| 1 |
| e |
| 2 |
| e |
∴实数a的取值范围为(4,e+2+
| 3 |
| e |
