如图,已知在三角形ABC中,AB=AC,角BAC=120度,AC的垂直平分线EF交AC于点E,交BC于点F,求证BF=2CF
人气:179 ℃ 时间:2019-08-18 00:27:29
解答
证明:
连接AF
∵EF是AC的垂直平分线
∴AF=CF
∵∠BAC=120°,AB=AC
∴∠B=∠C=30°
∴∠C=∠CAF=30°
∴∠BAF=90°
∴2AF=BF
∴BF=2CF嗯好谢谢。没有请采纳。
推荐
- 如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.
- 如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.
- 如图,三角形ABC中,AB=AC,角BAC等于120度,EF是AB的垂直平分线,EF交BC于F,交AB于E求证BF=二分之一FC
- 如图,三角形ABC中,AB=AC,角BAC=54度,角BAC的平分线与AB的垂直平分线交于点O,将角C沿EF(E在BC上,F在AC
- 如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.
- 初二《端午的鸭蛋》中袁枚的古文翻译~急要
- thanksss!设数列{an}的前n项和为sn,已知a1=a,an+1=sn+3^n,n∈N* (1)设bn=sn-3^n,求数列{bn}
- 英语作文母亲生病了我没能参加好友的生日聚会道
猜你喜欢