已知椭圆C:x^/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1(-1,0),F2(1,0),且经过点(1,3/2),一组斜率为3/2的直线
与椭圆C都相较于不同两点A,B
1.证明:AB的中点都在同一直线l上
2.对于1中的直线l,设l与椭圆C交于两点M,N,试探究椭圆上使三角形MNQ面积为根号3的点Q有几个.证明你的结论
人气:149 ℃ 时间:2020-04-07 20:09:23
解答
由题意知c=1,所以a²=b²+1,椭圆方程为x²/(b²+1)+y²/b²=1,
将点(1,3/2)代入方程,整理得4b^4-9b²-9=0,即(b²-3)(4b²+3)=0,
所以b²=3,a²=4,椭圆方程为x²/4+y²/3=1.
设直线为y=(3/2)x+m,代入椭圆方程得x²/4+(3/2x+m)²/3=1,
整理得3x²+3mx+m²-3=0,
设A(x1,y1),B(x2,y2),则x1+x2=-m,
所以y1+y2=3/2x1+m+3/2x2+m=3/2(x1+x2)+2m=1/2m,
因此AB的中点为(-1/2m,1/4m),即AB的中点都在同一直线l:y=-1/2x上.
将y=-1/2x代入椭圆x²/4+y²/3=1,得x²=3,x=±√3,
所以y=±√3/2,即M(√3,-√3/2),N(-√3,√3/2),|MN|=√15,
因为△MNQ的面积是√3,所以点Q到直线y=-1/2x的距离为2√3/√15=2/√5.
设平行于直线l:y=-1/2x的直线l'的方程为y=-1/2x+n,
则l与l'之间的距离应满足|n|/√[(1/2)²+1²]=2/√5,解得n=±1,
所以l'的方程是y=-1/2x+1或y=-1/2x-1.
将y=-1/2x+1代入x²/4+y²/3=1整理得x²-x-2=0,解得x=-1或2,
因此直线y=-1/2x+1与椭圆的交点是Q1(-1,3/2),Q2(2,0).
同理可得直线y=-1/2x-1与椭圆的交点是Q3(1,-3/2),Q(-2,0).
故椭圆上使三角形MNQ面积为√3的点Q有四个.
推荐
- 已知椭圆C以F1(-2,0)F2(2,0)为焦点且经过P(-5/2,3/2) (1)求椭圆方程(2)若斜率为1的直线L和椭圆C相交
- 设椭圆x^2/a^2+y^2/b^2=1的两焦点分别为F1和F2,p为椭圆上任意一点.一条斜率为1/2的直线叫椭圆于AB两点,若a变化时可同时满足(1)角F1PF2的最大值为π/3(2)直线l:ax+y+1=0平分线段AB,求实数a的取值范
- 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率
- 已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为
- 椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左,右焦点分别是F1(-c,0),F2(c,0),过F1斜率为1的直线l与椭圆C相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列
- 晶态与非晶态的区别?
- there is this man
- 两个等差数列{AN},{BN}.前N项和的比为(5N+3)/(2N+7)则A9
猜你喜欢
- 实事求是思想路线对中国革命建设和改革开放有哪些意义
- 初一上半年数学,怎么算小孩的未来身高
- 某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:(1)买一套西装送一条领带;(2)西装和领带均按定价的90%付
- 帮忙分下类:(澳大利亚,英国,美国,中国,新加坡) 讲中文的:讲英文的:讲中文和英语的:
- 用同样的电子称和同样一件东西放到地球上称和放到火星上称显示的读数一不一样
- 如何在一个球面上画一个椭圆,只有一个圆规
- 钢笔与圆珠笔每支相差120元,小明带的钱买5支钢笔差1.5元,买8支圆珠笔多了0.6元,小明带了多少钱?
- 她是谁翻译成英语,