等比数列an的首项a1=2011,公比q=-1/2,数列{an}的前n项和记为Sn,前n项积记为Tn
1.证明:S2小于等于Sn小于等于S1
2.判断Tn与Tn+1的大小关系,并求m为何值时,Tn取得最大值
人气:188 ℃ 时间:2019-11-23 09:35:00
解答
(1)证:Sn=S1+a2[1-(-1/2)^(n-1)]/(1-(-1/2))=S1-(1/3)a1[1-(-1/2)^(n-1)]≤S1,当n=1时,等号成立Sn=S2+a3[1-(-1/2)^(n-2)]/(1-(-12))=S2+(1/6)a1[1-(-1/2)^(n-2)]≥S2,当n=2时,等号成立∴S2≤Sn≤S1.∵|Tn+1|/|Tn...
推荐
- 已知等比数列{an}的首项a1=2011,公比q=-(1/2),数列{an}的前n项和记为Sn,前n项积记为Tn.…证明:S2...
- 已知数列{an},an>0,它的前n项和记为sn,{an}是一个首项为a,公比为q(q>0)的等比数列,且Gn=a1^2+a2^2+……+
- 数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an
- 数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an
- 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,…).证明: (Ⅰ)数列{Snn}是等比数列; (Ⅱ)Sn+1=4an.
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢