F1F2是椭圆两焦点满足向量MF1,MF2相乘=0(M在椭圆内)离心率范围?
人气:421 ℃ 时间:2019-11-02 00:05:39
解答
设 x²/a²+y²/b²=1
M(x,y)
b²x²+a²y²=a²b²
MF1=(-c-x,-y)
MF2=(c-x,-y)
MF1.MF2=x²-c²+y²=0
a²x²-a²c²+a²b²-b²x²=0
(a²-b²)x²=a²c²-a²b²≥0
c²≥b²=a²-c²
e²≥1/2
e∈(√2/2,1)
推荐
- 已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.
- F1,F2是椭圆的两个焦点,满足向量MF1*向量MF2=0的点M总在椭圆内部,则椭圆离心率的取值范围是
- 已知F1,F2是椭圆的两个焦点,满足向量MF1*MF2=0的点总在椭圆内部,则该椭圆离心率的范围是?
- 已知F1、F2是椭圆的两个焦点,满足MF1•MF2=0的点M总在椭圆内部,则椭圆离心率的取值范围是_.
- 已知F1,F2是椭圆焦点,满足向量MF1·MF2=0的点M总在椭圆内部,则椭圆离心率范围是?
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢