设y=f(e^3x),f'(x)=lnx,则dy|dx等于多少,
人气:236 ℃ 时间:2020-01-30 15:02:08
解答
dy/dx
=f'(e^3x)·e^3x·3
=ln(e^3x)·e^3x·3
=9xe^3xe^3x*3怎么来的,谢谢复合函数求导:先对最外层求导:f'()再对次外层求导:(e^3x)'=e^3x再对最里层求导:(3x)'=3
推荐
- 设y=(2+lnx)/x,则dy/dx(x=e)=
- 设y=f((2x-1)/(x+1)),f'(x)=lnx^(1/3),求dy/dx
- y=(lnx)∧y,求dy/dx=?
- 设y=f[(3x-2)/(3x+2)]且f'(x)=arctanx^2,则dy/dx|x=0的值多少
- 改换积分次序:∫ e 1dx∫ lnx 0f(x,y)dy=_.
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢