证明:定义在R上的函数y=f(x)的图像关于x=a对称的充要条件f(x)=f(2a-x)(a属于R)
人气:219 ℃ 时间:2019-08-20 03:58:42
解答
y=f(x)的图像关于x=a对称,则f(a-x)=f(a+x)
设 a-x=t,则x=a-t,a+x=2a-t
f(t)=f(2a-t)即f(x)=f(2a-x)
若f(x)=f(2a-x),另x=a-t,则2a-x=a+t
即f(a-t)=f(a+t)
即f(a-x)=f(a+x),所以y=f(x)的图像关于x=a对称
证毕
推荐
- 对于定义在R 上的函数f(x) ,可以证明点 A(m,n)是f(x) 图像的一个对称点的充要条件f(m-x)+f(m+x)=2n
- 设f(x)在R上有定义,证明y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足 f(x+1)=f(1-x),x∈R
- 设y=f(x)是定义在R上的函数,求证:A(a,b)是函数y=f(x)图象的一个对称中心的充要条件是:f(x)+f(2a-x)=2b.
- 如何证明F(2A+X)=F(-X)是函数关于X=A对称的充要条件
- 怎么证明:函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b?
- 关于光谱的说法
- x的平方-(2a+1)x+a的平方+a大于等于0
- 器材:量筒一只,木块,烧杯,测量某液体的密度(已知此液体密度小于水的密度)设计实验
猜你喜欢