设y=f(x)是定义在R上的函数,求证:A(a,b)是函数y=f(x)图象的一个对称中心的充要条件是:f(x)+f(2a-x)=2b.
人气:304 ℃ 时间:2019-11-23 15:37:04
解答
由于(a,b)是函数y=f(x)图象的一个对称中心,利用图像可以看出
f(a-x)-b=-[f(a+x)-b]
(相当于把(a,b)平移到原点,考虑原点为对称中心的函数图像实际上就是奇函数图像)
也就是f(a-x)+f(a+x)=2b,用x-a代替x,就得出
f(2a-x)+f(x)=2b,就是所要证明的结果.
推荐
- 证明:定义在R上的函数y=f(x)的图像关于x=a对称的充要条件f(x)=f(2a-x)(a属于R)
- 怎么证明:函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b?
- 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b
- f(x)对定义域中任一x均满足f(x)=f(2a-x)=2b,则函数y=f(x)的图像关于点(a,b)对称.
- 对于定义在R 上的函数f(x) ,可以证明点 A(m,n)是f(x) 图像的一个对称点的充要条件f(m-x)+f(m+x)=2n
- 设总体x服从参数为2的指数分布,x1,x2...xn为总体X的简单随机抽样,则当n→∞时,Yn=1/n∑Xi依概率收敛于?
- 我国的国旗上的五颗星代表了什么意思?
- 3又20分之1的小数是多少?
猜你喜欢