>
数学
>
用反证法证明.若a、b、c均为实数,且a=x
2
-2y+
π
2
,b=y
2
-2z+
π
3
,c=z
2
-2x+
π
6
,求证:a、b、c中至少有一个大于0.
人气:119 ℃ 时间:2019-08-28 02:07:41
解答
证明:设a、b、c都不大于0,即a≤0,b≤0,c≤0,
∴a+b+c≤0,
而a+b+c=(x
2
-2y+
π
2
)+(y
2
-2z+
π
3
)+(z
2
-2x+
π
6
)
=(x
2
-2x)+(y
2
-2y)+(z
2
-2z)+π=(x-1)
2
+(y-1)
2
+(z-1)
2
+π-3,
∴a+b+c>0,
这与a+b+c≤0矛盾,
故假设是错误的,
故a、b、c中至少有一个大于0
推荐
用反证法证明.若a、b、c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a、b、c中至少有一个大于0.
已知a,b,c,均为实数,且a=x^2-2y+ π /2,b=y^2-2z+π /3,c=z^2-2x+π/6求证abc中至有一个大于0
1.已知a b c均为实数 且a=x^2-2y+π/2,b=y^2-2z+π/3,c=z^2-2x+π/6 求证abc之中至少有一个大于0
用反证法证明.若a、b、c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a、b、c中至少有一个大于0.
x,y,z为实数,设A=x^2-2y+π/2,B=y^2-2z+π/3,C=z^2-2x+π/6,证明:A,B,C中至少有一个大于零
设全集S={(x,y)/X,Y属于R},集合M={(X,Y)x-2分之Y-3等于1},N={(X,Y),Y=X+1}则(补集M)交等于什么?
综合素质教育是什么意思
设椭圆的离心率为二分之一,右焦点为F(c,0),方程ax方+bx-c=0的两个实根为x1,x2,则P(x1,x2)
猜你喜欢
过抛物线x2=4y的焦点F作直线交抛物线于P1(x1、y1),P2(x2、y2)两点,若y1+y2=6,则|P1P2|的值为( ) A.5 B.6 C.8 D.10
用exhausted造句:三人又热又胀,而且筋疲力尽
it is C for sb to do sth it take sb sometime to do sth it take sth to do sth
英语翻译
How to Get a Good Grade in College
thanks for后加短语还是加句子
求不等式kx+b-m/x
Do you like play games?修改病句
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版