已知{an}为等差数列,{bn}为各项均是正数的等比数列,且a1=b1=1,a2+a4=b3,b2b4=a3
(Ⅱ)数列{8anbn2}的前n项的和Sn.
.是8an乘以bn的平方,他的Sn
人气:432 ℃ 时间:2019-08-18 18:27:27
解答
因为a2+a4=2a3,b2*b4=(b3)²
所以2a3=b3,(b3)²=a3
那么(b3)²=1/2*a3
而b3>0,所以b3=1/2
于是a3=1/4
那么公差d=(1/4-1)/2=-3/8,公比q=√(1/2)=√2/2
所以an=1-3/8*(n-1)=(11-3n)/8,bn=(√2/2)^(n-1)
于是8an=11-3n,bn²=(1/2)^(n-1)=1/2^(n-1)
所以Sn=8/2^0+5/2^1+2/2^2+……+(11-3n)/2^(n-1)①
那么Sn/2=8/2^1+5/2^2+……+(14-3n)/2^(n-1)+(11-3n)/2^n ②
②-①,得:-Sn/2=-8+3/2^1+3/2^2+……+3/2^(n-1)+(11-3n)/2^n
=-8+3/2^1×[1-1/2^(n-1)]/(1-1/2)+(11-3n)/2^n
=-8+3-3/2^(n-1)+(11-3n)/2^n
=-5+(5-3n)/2^n
所以Sn=(3n-5)/2^(n-1)+10
推荐
- 设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,求{a}、{b}的通项公式
- 设{an}为等差数列,{bn}为等比数列,已知a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}前10项的和S10及T10
- 已知等差数列{an}和正项等比数列{bn},a1=b1=1,a3+a7=10,b3=a4
- 在等比数列{an}中,an>0,q≠1,且a2,1/2,a3,a1成等差数列,则(a2+a3)/(a3+a4)=?
- 在数列{an}中an≠0,a1,a2,a3成等差数列,a2,a3,a4成等比数列,a3,a4,a5的倒数成等差数列,则a1,a3,a5( ) A.是等差数列 B.是等比数列 C.三个数的倒数成等差数列 D.三个数的平方成等
- 除开熔沸点,物体吸收热量是否一定使分子平均动能上升?为什么?
- 将1~10的自然数随意排成一排.如果相邻的两个数中,前面的数大于后面的数,那么就交换它们的位置.如此操作下去,直到前面的数都小于后面的数为止.当这十个数的排列顺序为:8,5,2,6,10,7,9,1,4,3时,需交换多少次?
- 初二物理求快速解答!
猜你喜欢