∠DAE=1/2*(∠C-∠B)
90°=∠DAE+∠AED
=∠DAE+∠EAC+∠C
=∠DAE+1/2*∠BAC+∠C
=∠DAE+1/2*(180°-∠A+∠C)+∠C
整理得∠DAC=1/2(∠C-∠B)
方法二:
∵∠A=180°-∠B-∠C(三角形内角和180),且AE平分∠BAC,
∴∠EAC=1/2*∠A(角平分线定义)
即:∠EAC=90°- (1/2)*(∠B+∠C)
∵AD⊥BC
∴∠ADC=90(垂直定义)
∴∠DAC=90°- ∠C(三角形内角和180)
则∠EAD=∠EAC-∠DAC =[90°-(1/2)*(∠B+∠C)] - (90°-∠C) =(1/2)(∠C-∠B)
![](http://a.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=b37f51a4b44543a9f54ef2ca2e27a6ba/a686c9177f3e6709c95bcaaf38c79f3df8dc5502.jpg)