等轴双曲线x^2-y^2=a^2上一点P与两焦点F1 F2的连线互相垂直
求S△PF1F2
人气:111 ℃ 时间:2019-08-21 05:34:19
解答
c^2=2a^2
PF1-PF2=2a
两边平方
PF1^2-2PF1PF2+PF2^2=4a^2
又PF1^2+PF2^2=4C^2
PF1PF2=2a^2
S△PF1F2=0.5*PF1PF2=a^2
推荐
- 等轴双曲线x2-y2=1上一点P与两焦点F1,F2连线互相垂直,则△PF1F2的面积( ) A.12 B.2 C.1 D.4
- 在双曲线x²-y²=1上求一点P,使它与该双曲线的两焦点F1,F2的连线互相垂直
- 双曲线x29−y216=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.
- 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60
- 如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.
- 想着暑假预习高一的新课,请问高一有哪些课本,分别是什么版本的?顺便补充一问:选修和必修是肿么一回事?=
- they do homework at seven o'clock every day怎么变一般疑问句?
- 歧化反应原理,从得失电子方面解释一下,
猜你喜欢
- 在2-【2(x+y)-()】=x+2,括号内应填
- 在暗室里用红光照射一幅绚丽多彩的油画作品,将会看到什么现象?为什么?
- 墨守成规象征哪个人物
- 将一个末尾数字不小于零的正整数的末尾数字去掉后,所得的新数是原数的约数,则这种性质的正整数当中,
- 1,2,3,4,5这5个数字可以组成许多个没有重复的四位数,将他们从小到大排列起来,4123是第几个数?
- chuck wall
- 如图所示,竖直固定放置的斜面DE与一光滑的圆弧轨道ABC相连,C为切点,圆弧轨道的半径为R,斜面的倾角为θ.现有一质量为m的滑块从D点无初速下滑,滑块可在斜面和圆弧轨道之间做往复
- 替凡卡的爷爷写一封信给凡卡