在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0,求实数a的值
人气:291 ℃ 时间:2019-11-22 00:04:25
解答
圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0同时有解,则
3ρcosθ+4ρsinθ+a
=3cosθ*2cosθ+4sinθ*2cosθ+a
=6*(cosθ)^2+8*sinθ*cosθ+a
=3[1+cos(2θ)]+4sin(2θ)+a
=3+5sin(2θ+A)+a (令tgA=4/3)
=0
则a =-3-5sin(2θ+A)=-3-5sin[2θ+arctg(4/3)]
推荐
- 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρcosθ+a=0相切,求实数a的值
- 在极坐标系中,直线p(sinθ-cosθ)=a与直线p=2cosθ-4sinθ相交于A,B两点,若
- 在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ−π4)=22. (1)求圆O和直线l的直角坐标方程; (2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.
- 已知圆的极坐标方程是ρ=2cosθ与直线3ρcosθ+4ρsinθ +a=0相切,求实数a的值.
- 在平面直角坐标系中,已知点O(0,0),A(3,0),B(0,3),C(cosα,sinα),D(-2cosα,-t),其中α∈(π/2,3π/2)
- 怎么1小时记100个英语单词
- 二分之一,三分之一 ,六分之五,( ),六分之十二,( ) 按规律填数.
- 三角函数的诱导公式有没有简单的记法
猜你喜欢