> 数学 >
设函数f(x)=x^4+ax^3+2x^2+b(x∈R),a,b∈R.(1)若对任意的a∈[-2,2]不等式f(x)≤1在[-1,0]上恒成立,
求b的取值范围.
人气:329 ℃ 时间:2019-10-11 05:47:12
解答
f'(x)=4x^3+3ax^2+4x=4x(x^2+3ax/4+1)=4x[(x+3a/8)^2+1-(3a/8)^2]
因为a∈[-2,2],所以1-(3a/8)^2>0
故f'(x)=0只有一个极值点x=0,且为极小值点.
故当x∈[-1,0]时,f(x)单调减
此区间的最大值为f(-1)=1-a+2+b=3-a+b
由题意,有3-a+b
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版