已知a=(根号3,-1),b=(1/2,根号3/2),若存在不同时为零的实数k和t,使x
=a+(t^2-3) b,y= -ka+tb,且X垂直于y,试求函数关系式k=f(t).
人气:457 ℃ 时间:2019-09-20 06:05:43
解答
已知a=(√3,-1),b=(1/2,√3/2),若存在不同时为零的实数k和t,使
x=a+(t²-3) b,y= -ka+tb, 且X垂直于y,试求函数关系式k=f(t).
x=a+(t²-3)b=(√3+(t²-3)/2,-1+(t²-3)√3/2);y=(-k√3+t/2,k+(√3)t/2).
∵x⊥y,∴x•y=[√3+(t²-3)/2](-k√3+t/2)+[-1+(t²-3)√3/2][k+(√3)t/2]
=[-3k-k(t²-3)(√3)/2+(√3)t/2+t(t²-3)/4]+[-k+k(t²-3)√3/2-(√3)t/2+3t(t²-3)/4]
=t³-3t-4k=0
即得函数关系式:k=(1/4)(t³-3t).
推荐
- 已知平面向量a=(根号3,-1),b=(1/2,根号3/2).若存在不同时为零的实数k和t,使x=a+(t^2-3)b,
- 已知平面向量a=(根号3,-1),b=(1/2,根号3/2)若存在不同时为零的实数k和t,使x=a+(t^2-3)b,y=-ka+tb,且X
- 已知a=(根号3,1),b=(1/2,-根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka +tb,且
- 已知向量a=(根号3,1),向量b=(1/2,根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka+tb,且x垂直y试求﹙k+t^2﹚/t的最小值
- 已知a=(根号3,-1)b=(1/2,根号3/2)且存在实数K和T,使得x=a+(t²-3)b,y=-ka+tb,
- 乙烯加聚反应方程式,求写的清楚点,
- 伯利克里时代是指哪一时期
- 用not、this、her、is、case、pencil一句话再用pen、that、his、is
猜你喜欢