已知向量a=(根号3,1),向量b=(1/2,根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka+tb,且x垂直y试求﹙k+t^2﹚/t的最小值
人气:313 ℃ 时间:2019-09-13 20:49:37
解答
X=a+(t²-3)b=(√3+(t²-3)/2,-1+(√3)(t²-3)/2);Y=(-k√3 +t/2,k+(√3)t/2);∵X⊥Y,∴X•Y=[√3+(t²-3)/2][-k√3 +t/2]+[-1+(√3)(t²-3)/2][k+(√3)t/2]=[-3k-(√3)k(t²-3)/2+(√3)t/2+t(t²-3)/4]+[-k+(√3)k(t²-3)/2-(√3)t/2+3t(t²-3)/4]=-4k+4t(t²-3)/4=0故k=t(t²-3)/4,∴u=(k+t²)/t=[t(t²-3)/4+t²]/t=(t³+4t²-3t)/4t=(t²+4t-3)/4=(1/4)[(t+2)²-7]≧-7/4当且仅仅当t=-2(此时k=-1/2)时等号成立.即当t=-2,k=-1/2时,(k+t²)/t获得最小值-7/4.
推荐
- 已知平面向量a=(根号3,-1),b=(1/2,根号3/2)若存在不同时为零的实数k和t,使x=a+(t^2-3)b,y=-ka+tb,且X
- 已知向量a=(根号3,-1),b=(1/2.根号3/2),存在实数k和t,使得x=向量a+(t^2-3)b,y=-ka+tb,且x垂直y
- 已知向量a=(根号3,-1),b=(1/2,根号3/2),若存在非零实数k,t使得x=a+(t平方-3)b,y=-ka+tb,且x垂直y.
- 已知a=(根号3,1),b=(1/2,-根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka +tb,且
- 已知向量a=(根号3,1),向量b=(1/2,根号3/2),且存在实数k和t,使得x=a+(t^2-3)b,y=-ka+tb,且x垂直y
- 一元二次方程ax^2+bx+c=0 ,有两个借分别为1和-1 ,求
- 《咏雪》公大笑乐怎样理解?
- 2,5,5-三甲基庚烷是烯烃与氢气加成后的产物.则原来的烯烃可能有几种结构?
猜你喜欢
- 关于兄弟情义的句子
- 社会主义建设在思想政治上的根本保证是( )
- 一条三米长的绳子,第一次用了五分之二米,还剩五分之三米,
- 如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个是等腰三角形.(保留作图痕迹,不要求写做法和证明)
- it () be a red but I'm not sure 是填might 还是must
- 2001的平方减2000乘2002的结果
- join in & take part in的异同和用法
- f(1-x)=2f(x)+(x-1)²-1,求f(x)