设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?
帮我写出解答过程和用到什么性质和定理好吗?
人气:107 ℃ 时间:2019-11-13 07:14:13
解答
如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.
设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得
(1/4)X=(A^2)^-1X,即(A^2)^-1X=(1/4)X,于是1/4是(A^2)^-1的一个特征值.
如果(A2)-1意思是(A^2)-I(I是单位阵),则矩阵(A2)-I必有一个特征值等于3.
设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得
A^2X-X=3X,((A^2)-I)X=3X,故3是(A^2)^-I的一个特征值.
推荐
- .设 =2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于( )
- 设A为可逆矩阵,λ是它的一个特征值,证明:λ≠0且λ-1是A-1的一个特征值.
- 设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.
- 试证:矩阵A可逆的充分必要条件是:它的特征值都不等于0
- 设λ=2是可逆矩阵A的一个特征值,则矩阵(1/3A)-1必有一个特征值等于_.
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢