> 数学 >
设函数f(x)=a²lnx —x²+ax,a>0.(1)求f(x)的单调区间.(2)求所有的实数a,使e—1≤f(x)≤e²对x属于[1,e]恒成立.注:e为自然对数的底数.
人气:489 ℃ 时间:2019-08-19 20:01:10
解答
f(x)=a²lnx —x²+ax,a>0.
f'(x)=a²/x-2x+a
=(-2x²+ax+a²)/x
=-(2x+a)(x-a)/x (x>0)
∵a>0,∴2x+a>0恒成立
f'(x)>0解得0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版